Prediction of Heart Disease using Ensemble Learning
نویسندگان
چکیده
Objectives: To propose a Bagging ensemble method to predict heart disease at early stages. The main focus of this research is increase the prediction accuracy in model. Methods: proposed system experimented with by using Cleveland datasets collected from UCI repository. dataset consists 14 attributes. In we applied different machine learning algorithms such as Decision tree, Naïve Bayes, Random Forest and SVM along classifier. entire trained upon Pearson correlation coefficient selected features under k-fold cross-validation setup. Final outcome obtained aggregating accuracy. Findings: performance was validated compared Machine models. attains higher classification 95.33% than all other methods. Novelty: A novel has been better predicting disease. Keywords: Ensemble Model; Learning; Prediction; Accuracy; Kfold cross validation
منابع مشابه
Software Defect Prediction Using Ensemble Learning Survey
Machine learning is a science that explores the building and study of algorithms that can learn from the data. Machine learning process is the union of statistics and artificial intelligence and is closely related to computational statistics. Machine learning takes decisions based on the qualities of the studied data using statistics and adding more advanced artificial intelligence heuristics a...
متن کاملOptimal Spatial Prediction Using Ensemble Machine Learning.
Spatial prediction is an important problem in many scientific disciplines. Super Learner is an ensemble prediction approach related to stacked generalization that uses cross-validation to search for the optimal predictor amongst all convex combinations of a heterogeneous candidate set. It has been applied to non-spatial data, where theoretical results demonstrate it will perform asymptotically ...
متن کاملthe role of type-d personality, social support and self-compassion in prediction of health behaviors in coronary heart disease patients
نظر به اهمیت و تاثیر روزافزون عوامل روانی – اجتماعی در سلامت جسمی و تاثیر عوامل روان شناختی در بروز بیماریهای مختلف از جمله بیماریهای قلبی و عروقی این پژوهش با هدف کلی بررسی ارتباط تیپ شخصیتی d ، حمایت اجتماعی و خود دلسوزی در پیش بینی رفتارهای بهداشتی بیماران کرونر قلبی و تعیین تفاوت بین بیماران کرونر قلبی با و بدون جراحی و افراد سالم در این متغیرها و رفتارهای بهداشتی آنان، انجام گرفت. جامعه آ...
15 صفحه اولHypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method
Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...
متن کاملHypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method
Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian journal of science and technology
سال: 2023
ISSN: ['0974-5645', '0974-6846']
DOI: https://doi.org/10.17485/ijst/v16i20.2279